Ozempic (fármacos GPL-1) vs. modulación acústica.
Tú eliges.
~~
La modulación acústica de las células grasas, como se describe en el estudio de la Universidad de Kioto de 2025, y Ozempic (semaglutida), un agonista del receptor GLP-1, tienen como objetivo abordar la obesidad, pero difieren significativamente en el mecanismo, la aplicación y la etapa de desarrollo.
El enfoque de ondas sonoras suprime de forma no invasiva la diferenciación de los adipocitos hasta en un 15% in vitro a través de la mecanotransducción y las vías mediadas por Ptgs2, lo que ofrece una posible terapia sin fármacos y con efectos secundarios mínimos, aunque sigue estando en investigación inicial con una eficacia in vivo no probada.
Por el contrario, Ozempic, un medicamento inyectable aprobado por la FDA, promueve la pérdida de peso imitando el GLP-1, reduciendo el apetito y ralentizando el vaciado gástrico, logrando una reducción del peso corporal del 15-20% en ensayos clínicos. Sin embargo, conlleva riesgos como náuseas, pancreatitis y dependencia a largo plazo.
Si bien Ozempic es un tratamiento sistémico probado, la terapia acústica no es invasiva e iguala el impacto de Ozempic.

Sonic BOOM!!
Soundwaves help you lose weight with no injections no drugs!
~~
A groundbreaking study published in Communications Biology on April 19, 2025, by researchers at Kyoto University, led by Masahiro Kumeta, has revealed that audible sound waves can influence cellular behavior, specifically suppressing fat cell (adipocyte) differentiation by modulating gene expression.
Titled “Acoustic modulation of mechanosensitive genes and adipocyte differentiation,” the study demonstrates how sound, as a non-invasive mechanical stimulus, can alter cellular processes, opening potential avenues for applications in biotechnology and obesity management.
Background and Motivation
Cells are known to respond to mechanical stimuli through mechanotransduction, a process where physical forces are converted into biochemical signals.
While previous research has explored high-intensity ultrasound or low-vibration stimuli, the effects of audible sound waves (20 Hz to 20 kHz, within the human hearing range) on cellular behavior have been underexplored due to challenges in isolating sound’s effects from confounding factors like heat or vibrations.
Kumeta’s team built on their 2018 findings, which showed audible sound could modulate mechanosensitive genes, but sought to refine the experimental setup to directly attribute changes to acoustic waves and investigate their impact on fat cell development.
The researchers designed a precise sound emission system to deliver controlled acoustic waves to cultured cells, minimizing extraneous effects. The setup involved:
•Vibration Transducer: A digital audio player connected to an amplifier sent sound signals to an upside-down vibration transducer mounted on a shelf. This transducer transmitted acoustic waves through a diaphragm to a cell culture dish, simulating physiological sound levels (approximately 100 Pa, comparable to loud conversational or musical sound).
•Sound Patterns: Three sound types were tested: a 440 Hz sine wave (equivalent to the musical note A), a 14 kHz high-frequency tone, and white noise (random broadband sound). These were applied continuously for 2 or 24 hours or in specific schedules for differentiation experiments.
•Cell Types: The study primarily used murine C2C12 myoblasts (muscle precursor cells) for gene expression analysis and 3T3-L1 preadipocytes (fat cell precursors) for adipocyte differentiation studies.
•Analysis Techniques: RNA sequencing identified differentially expressed genes, while microscopy and biochemical assays assessed cellular morphology, differentiation, and molecular pathways. Specific focus was placed on the gene Ptgs2 (prostaglandin-endoperoxide synthase 2, also known as Cox-2) due to its robust response to sound.
The experiments were conducted with controls to ensure sound-specific effects, such as maintaining consistent temperature and minimizing vibrational artifacts.
For adipocyte differentiation, 3T3-L1 cells were exposed to sound during the initial three-day induction phase with a differentiation medium containing methylisobutylxanthine, dexamethasone, and insulin (MDI), followed by four days in insulin-only medium.
The findings have profound implications for both fundamental biology and clinical applications:
•Non-Invasive Therapies: Since sound is non-material, acoustic stimulation offers a safe, immediate, and non-invasive method to modulate cellular behavior. The study suggests potential for sound-based therapies to manage obesity by inhibiting fat cell formation without drugs or surgery.
•Medical Applications: Beyond obesity, acoustic modulation could guide stem cell differentiation, promote tissue healing, or regulate inflammation, given Ptgs2’s role in these processes. The non-invasive nature of sound makes it appealing for clinical settings, potentially delivered via wearable devices.
Link:

64,69 mil
165
El contenido de esta página lo proporcionan terceros. A menos que se indique lo contrario, OKX no es el autor de los artículos citados y no reclama ningún derecho de autor sobre los materiales. El contenido se proporciona únicamente con fines informativos y no representa las opiniones de OKX. No pretende ser un respaldo de ningún tipo y no debe ser considerado como un consejo de inversión o una solicitud para comprar o vender activos digitales. En la medida en que la IA generativa se utiliza para proporcionar resúmenes u otra información, dicho contenido generado por IA puede ser inexacto o incoherente. Lee el artículo vinculado para obtener más detalles e información. OKX no es responsable del contenido alojado en sitios de terceros. El holding de activos digitales, incluyendo stablecoins y NFT, implican un alto grado de riesgo y pueden fluctuar en gran medida. Debes considerar cuidadosamente si el trading o holding de activos digitales es adecuado para ti a la luz de tu situación financiera.