Ozempic (GPL-1-geneesmiddelen) versus akoestische modulatie. U kiest. ~~ De akoestische modulatie van vetcellen, zoals beschreven in de studie van de Universiteit van Kyoto uit 2025, en Ozempic (semaglutide), een GLP-1-receptoragonist, zijn beide bedoeld om obesitas aan te pakken, maar verschillen aanzienlijk in mechanisme, toepassing en ontwikkelingsstadium. De geluidsgolfbenadering onderdrukt niet-invasief de differentiatie van adipocyten tot 15% in vitro door middel van mechanotransductie en Ptgs2-gemedieerde routes, en biedt een potentiële geneesmiddelvrije, bijwerkingen-minimale therapie, hoewel het in vroeg onderzoek blijft met onbewezen in vivo werkzaamheid. Ozempic, een door de FDA goedgekeurd injecteerbaar medicijn, daarentegen bevordert gewichtsverlies door GLP-1 na te bootsen, de eetlust te verminderen en de maaglediging te vertragen, waardoor in klinische onderzoeken een vermindering van het lichaamsgewicht met 15-20% wordt bereikt. Het brengt echter risico's met zich mee zoals misselijkheid, pancreatitis en langdurige afhankelijkheid. Hoewel Ozempic een bewezen, systemische behandeling is, is akoestische therapie niet-invasief en komt het overeen met de impact van Ozempic.
Sonic BOOM!! Soundwaves help you lose weight with no injections no drugs! ~~ A groundbreaking study published in Communications Biology on April 19, 2025, by researchers at Kyoto University, led by Masahiro Kumeta, has revealed that audible sound waves can influence cellular behavior, specifically suppressing fat cell (adipocyte) differentiation by modulating gene expression. Titled “Acoustic modulation of mechanosensitive genes and adipocyte differentiation,” the study demonstrates how sound, as a non-invasive mechanical stimulus, can alter cellular processes, opening potential avenues for applications in biotechnology and obesity management. Background and Motivation Cells are known to respond to mechanical stimuli through mechanotransduction, a process where physical forces are converted into biochemical signals. While previous research has explored high-intensity ultrasound or low-vibration stimuli, the effects of audible sound waves (20 Hz to 20 kHz, within the human hearing range) on cellular behavior have been underexplored due to challenges in isolating sound’s effects from confounding factors like heat or vibrations. Kumeta’s team built on their 2018 findings, which showed audible sound could modulate mechanosensitive genes, but sought to refine the experimental setup to directly attribute changes to acoustic waves and investigate their impact on fat cell development. The researchers designed a precise sound emission system to deliver controlled acoustic waves to cultured cells, minimizing extraneous effects. The setup involved: •Vibration Transducer: A digital audio player connected to an amplifier sent sound signals to an upside-down vibration transducer mounted on a shelf. This transducer transmitted acoustic waves through a diaphragm to a cell culture dish, simulating physiological sound levels (approximately 100 Pa, comparable to loud conversational or musical sound). •Sound Patterns: Three sound types were tested: a 440 Hz sine wave (equivalent to the musical note A), a 14 kHz high-frequency tone, and white noise (random broadband sound). These were applied continuously for 2 or 24 hours or in specific schedules for differentiation experiments. •Cell Types: The study primarily used murine C2C12 myoblasts (muscle precursor cells) for gene expression analysis and 3T3-L1 preadipocytes (fat cell precursors) for adipocyte differentiation studies. •Analysis Techniques: RNA sequencing identified differentially expressed genes, while microscopy and biochemical assays assessed cellular morphology, differentiation, and molecular pathways. Specific focus was placed on the gene Ptgs2 (prostaglandin-endoperoxide synthase 2, also known as Cox-2) due to its robust response to sound. The experiments were conducted with controls to ensure sound-specific effects, such as maintaining consistent temperature and minimizing vibrational artifacts. For adipocyte differentiation, 3T3-L1 cells were exposed to sound during the initial three-day induction phase with a differentiation medium containing methylisobutylxanthine, dexamethasone, and insulin (MDI), followed by four days in insulin-only medium. The findings have profound implications for both fundamental biology and clinical applications: •Non-Invasive Therapies: Since sound is non-material, acoustic stimulation offers a safe, immediate, and non-invasive method to modulate cellular behavior. The study suggests potential for sound-based therapies to manage obesity by inhibiting fat cell formation without drugs or surgery. •Medical Applications: Beyond obesity, acoustic modulation could guide stem cell differentiation, promote tissue healing, or regulate inflammation, given Ptgs2’s role in these processes. The non-invasive nature of sound makes it appealing for clinical settings, potentially delivered via wearable devices. Link:
Origineel weergeven
64,69K
165
De inhoud op deze pagina wordt geleverd door derden. Tenzij anders vermeld, is OKX niet de auteur van het (de) geciteerde artikel(en) en claimt geen auteursrecht op de materialen. De inhoud is alleen bedoeld voor informatieve doeleinden en vertegenwoordigt niet de standpunten van OKX. Het is niet bedoeld als een goedkeuring van welke aard dan ook en mag niet worden beschouwd als beleggingsadvies of een uitnodiging tot het kopen of verkopen van digitale bezittingen. Voor zover generatieve AI wordt gebruikt om samenvattingen of andere informatie te verstrekken, kan deze door AI gegenereerde inhoud onnauwkeurig of inconsistent zijn. Lees het gelinkte artikel voor meer details en informatie. OKX is niet verantwoordelijk voor inhoud gehost op sites van een derde partij. Het bezitten van digitale activa, waaronder stablecoins en NFT's, brengt een hoge mate van risico met zich mee en de waarde van deze activa kan sterk fluctueren. Overweeg zorgvuldig of de handel in of het bezit van digitale activa geschikt voor je is in het licht van je financiële situatie.