Ozempic (léky GPL-1) vs. akustická modulace. Na vás. ~~ Akustická modulace tukových buněk, jak je popsána ve studii Kjótské univerzity z roku 2025, a Ozempic (semaglutid), agonista receptoru GLP-1, mají za cíl řešit obezitu, ale výrazně se liší mechanismem, aplikací a fází vývoje. Přístup zvukových vln neinvazivně potlačuje diferenciaci adipocytů až o 15 % in vitro prostřednictvím mechanotransdukce a drah zprostředkovaných Ptgs2, což nabízí potenciální terapii bez léků s minimálními vedlejšími účinky, i když zůstává v raném výzkumu s neprokázanou účinností in vivo. Naproti tomu Ozempic, injekční lék schválený FDA, podporuje hubnutí tím, že napodobuje GLP-1, snižuje chuť k jídlu a zpomaluje vyprazdňování žaludku, čímž v klinických studiích dosahuje 15-20% snížení tělesné hmotnosti. Nese však rizika, jako je nevolnost, pankreatitida a dlouhodobá závislost. Zatímco Ozempic je osvědčená, systémová léčba, akustická terapie je neinvazivní a odpovídá účinku Ozempicu.
Sonic BOOM!! Soundwaves help you lose weight with no injections no drugs! ~~ A groundbreaking study published in Communications Biology on April 19, 2025, by researchers at Kyoto University, led by Masahiro Kumeta, has revealed that audible sound waves can influence cellular behavior, specifically suppressing fat cell (adipocyte) differentiation by modulating gene expression. Titled “Acoustic modulation of mechanosensitive genes and adipocyte differentiation,” the study demonstrates how sound, as a non-invasive mechanical stimulus, can alter cellular processes, opening potential avenues for applications in biotechnology and obesity management. Background and Motivation Cells are known to respond to mechanical stimuli through mechanotransduction, a process where physical forces are converted into biochemical signals. While previous research has explored high-intensity ultrasound or low-vibration stimuli, the effects of audible sound waves (20 Hz to 20 kHz, within the human hearing range) on cellular behavior have been underexplored due to challenges in isolating sound’s effects from confounding factors like heat or vibrations. Kumeta’s team built on their 2018 findings, which showed audible sound could modulate mechanosensitive genes, but sought to refine the experimental setup to directly attribute changes to acoustic waves and investigate their impact on fat cell development. The researchers designed a precise sound emission system to deliver controlled acoustic waves to cultured cells, minimizing extraneous effects. The setup involved: •Vibration Transducer: A digital audio player connected to an amplifier sent sound signals to an upside-down vibration transducer mounted on a shelf. This transducer transmitted acoustic waves through a diaphragm to a cell culture dish, simulating physiological sound levels (approximately 100 Pa, comparable to loud conversational or musical sound). •Sound Patterns: Three sound types were tested: a 440 Hz sine wave (equivalent to the musical note A), a 14 kHz high-frequency tone, and white noise (random broadband sound). These were applied continuously for 2 or 24 hours or in specific schedules for differentiation experiments. •Cell Types: The study primarily used murine C2C12 myoblasts (muscle precursor cells) for gene expression analysis and 3T3-L1 preadipocytes (fat cell precursors) for adipocyte differentiation studies. •Analysis Techniques: RNA sequencing identified differentially expressed genes, while microscopy and biochemical assays assessed cellular morphology, differentiation, and molecular pathways. Specific focus was placed on the gene Ptgs2 (prostaglandin-endoperoxide synthase 2, also known as Cox-2) due to its robust response to sound. The experiments were conducted with controls to ensure sound-specific effects, such as maintaining consistent temperature and minimizing vibrational artifacts. For adipocyte differentiation, 3T3-L1 cells were exposed to sound during the initial three-day induction phase with a differentiation medium containing methylisobutylxanthine, dexamethasone, and insulin (MDI), followed by four days in insulin-only medium. The findings have profound implications for both fundamental biology and clinical applications: •Non-Invasive Therapies: Since sound is non-material, acoustic stimulation offers a safe, immediate, and non-invasive method to modulate cellular behavior. The study suggests potential for sound-based therapies to manage obesity by inhibiting fat cell formation without drugs or surgery. •Medical Applications: Beyond obesity, acoustic modulation could guide stem cell differentiation, promote tissue healing, or regulate inflammation, given Ptgs2’s role in these processes. The non-invasive nature of sound makes it appealing for clinical settings, potentially delivered via wearable devices. Link:
Zobrazit originál
64,67 tis.
165
Obsah na této stránce poskytují třetí strany. Není-li uvedeno jinak, společnost OKX není autorem těchto informací a nenárokuje si u těchto materiálů žádná autorská práva. Obsah je poskytován pouze pro informativní účely a nevyjadřuje názory společnosti OKX. Nejedná se o doporučení jakéhokoli druhu a nemělo by být považováno za investiční poradenství ani nabádání k nákupu nebo prodeji digitálních aktiv. Tam, kde se k poskytování souhrnů a dalších informací používá generativní AI, může být vygenerovaný obsah nepřesný nebo nekonzistentní. Další podrobnosti a informace naleznete v připojeném článku. Společnost OKX neodpovídá za obsah, jehož hostitelem jsou externí weby. Držená digitální aktiva, včetně stablecoinů a tokenů NFT, zahrnují vysokou míru rizika a mohou značně kolísat. Měli byste pečlivě zvážit, zde je pro vás obchodování s digitálními aktivy nebo jejich držení vhodné z hlediska vaší finanční situace.