Ozempic (GPL-1-lääkkeet) vs. akustinen modulaatio.
Sinä valitset.
~~
Kioton yliopiston vuoden 2025 tutkimuksessa kuvattu rasvasolujen akustinen modulaatio ja GLP-1-reseptoriagonisti Ozempic (semaglutidi) pyrkivät molemmat käsittelemään liikalihavuutta, mutta eroavat merkittävästi mekanismiltaan, sovellukseltaan ja kehitysvaiheeltaan.
Ääniaaltolähestymistapa tukahduttaa ei-invasiivisesti rasvasolujen erilaistumista jopa 15 % in vitro mekanotransduktion ja Ptgs2-välitteisten reittien kautta, mikä tarjoaa mahdollisen lääkkeettömän, sivuvaikutusten minimaalisen hoidon, vaikka se on edelleen varhaisessa tutkimuksessa, jonka tehoa ei ole todistettu in vivo.
Sitä vastoin Ozempic, FDA:n hyväksymä injektoitava lääke, edistää painonpudotusta jäljittelemällä GLP-1:tä, vähentämällä ruokahalua ja hidastamalla mahalaukun tyhjenemistä, mikä saavuttaa 15-20 % painonpudotuksen kliinisissä tutkimuksissa. Siihen liittyy kuitenkin riskejä, kuten pahoinvointia, haimatulehdusta ja pitkäaikaista riippuvuutta.
Vaikka Ozempic on todistettu, systeeminen hoito, akustinen terapia on ei-invasiivinen ja vastaa Ozempicin vaikutusta.

Sonic BOOM!!
Soundwaves help you lose weight with no injections no drugs!
~~
A groundbreaking study published in Communications Biology on April 19, 2025, by researchers at Kyoto University, led by Masahiro Kumeta, has revealed that audible sound waves can influence cellular behavior, specifically suppressing fat cell (adipocyte) differentiation by modulating gene expression.
Titled “Acoustic modulation of mechanosensitive genes and adipocyte differentiation,” the study demonstrates how sound, as a non-invasive mechanical stimulus, can alter cellular processes, opening potential avenues for applications in biotechnology and obesity management.
Background and Motivation
Cells are known to respond to mechanical stimuli through mechanotransduction, a process where physical forces are converted into biochemical signals.
While previous research has explored high-intensity ultrasound or low-vibration stimuli, the effects of audible sound waves (20 Hz to 20 kHz, within the human hearing range) on cellular behavior have been underexplored due to challenges in isolating sound’s effects from confounding factors like heat or vibrations.
Kumeta’s team built on their 2018 findings, which showed audible sound could modulate mechanosensitive genes, but sought to refine the experimental setup to directly attribute changes to acoustic waves and investigate their impact on fat cell development.
The researchers designed a precise sound emission system to deliver controlled acoustic waves to cultured cells, minimizing extraneous effects. The setup involved:
•Vibration Transducer: A digital audio player connected to an amplifier sent sound signals to an upside-down vibration transducer mounted on a shelf. This transducer transmitted acoustic waves through a diaphragm to a cell culture dish, simulating physiological sound levels (approximately 100 Pa, comparable to loud conversational or musical sound).
•Sound Patterns: Three sound types were tested: a 440 Hz sine wave (equivalent to the musical note A), a 14 kHz high-frequency tone, and white noise (random broadband sound). These were applied continuously for 2 or 24 hours or in specific schedules for differentiation experiments.
•Cell Types: The study primarily used murine C2C12 myoblasts (muscle precursor cells) for gene expression analysis and 3T3-L1 preadipocytes (fat cell precursors) for adipocyte differentiation studies.
•Analysis Techniques: RNA sequencing identified differentially expressed genes, while microscopy and biochemical assays assessed cellular morphology, differentiation, and molecular pathways. Specific focus was placed on the gene Ptgs2 (prostaglandin-endoperoxide synthase 2, also known as Cox-2) due to its robust response to sound.
The experiments were conducted with controls to ensure sound-specific effects, such as maintaining consistent temperature and minimizing vibrational artifacts.
For adipocyte differentiation, 3T3-L1 cells were exposed to sound during the initial three-day induction phase with a differentiation medium containing methylisobutylxanthine, dexamethasone, and insulin (MDI), followed by four days in insulin-only medium.
The findings have profound implications for both fundamental biology and clinical applications:
•Non-Invasive Therapies: Since sound is non-material, acoustic stimulation offers a safe, immediate, and non-invasive method to modulate cellular behavior. The study suggests potential for sound-based therapies to manage obesity by inhibiting fat cell formation without drugs or surgery.
•Medical Applications: Beyond obesity, acoustic modulation could guide stem cell differentiation, promote tissue healing, or regulate inflammation, given Ptgs2’s role in these processes. The non-invasive nature of sound makes it appealing for clinical settings, potentially delivered via wearable devices.
Link:

64,69 t.
165
Tällä sivulla näytettävä sisältö on kolmansien osapuolten tarjoamaa. Ellei toisin mainita, OKX ei ole lainatun artikkelin / lainattujen artikkelien kirjoittaja, eikä OKX väitä olevansa materiaalin tekijänoikeuksien haltija. Sisältö on tarkoitettu vain tiedoksi, eikä se edusta OKX:n näkemyksiä. Sitä ei ole tarkoitettu minkäänlaiseksi suositukseksi, eikä sitä tule pitää sijoitusneuvontana tai kehotuksena ostaa tai myydä digitaalisia varoja. Siltä osin kuin yhteenvetojen tai muiden tietojen tuottamiseen käytetään generatiivista tekoälyä, tällainen tekoälyn tuottama sisältö voi olla epätarkkaa tai epäjohdonmukaista. Lue aiheesta lisätietoa linkitetystä artikkelista. OKX ei ole vastuussa kolmansien osapuolten sivustojen sisällöstä. Digitaalisten varojen, kuten vakaakolikoiden ja NFT:iden, omistukseen liittyy suuri riski, ja niiden arvo voi vaihdella merkittävästi. Sinun tulee huolellisesti harkita, sopiiko digitaalisten varojen treidaus tai omistus sinulle taloudellisessa tilanteessasi.