14 ч. назад
Pytest for LLM Apps is finally here! DeepEval turns LLM evals into a two-line test suite to help you identify the best models, prompts, and architecture for AI workflows (including MCPs). Learn the limitations of G-Eval and an alternative to it in the explainer below:
1 д. назад
Most LLM-powered evals are BROKEN! These evals can easily mislead you to believe that one model is better than the other, primarily due to the way they are set up. G-Eval is one popular example. Here's the core problem with LLM eval techniques and a better alternative to them: Typical evals like G-Eval assume you’re scoring one output at a time in isolation, without understanding the alternative. So when prompt A scores 0.72 and prompt B scores 0.74, you still don’t know which one’s actually better. This is unlike scoring, say, classical ML models, where metrics like accuracy, F1, or RMSE give a clear and objective measure of performance. There’s no room for subjectivity, and the results are grounded in hard numbers, not opinions. LLM Arena-as-a-Judge is a new technique that addresses this issue with LLM evals. In a gist, instead of assigning scores, you just run A vs. B comparisons and pick the better output. Just like G-Eeval, you can define what “better” means (e.g., more helpful, more concise, more polite), and use any LLM to act as the judge. LLM Arena-as-a-Judge is actually implemented in @deepeval (open-source with 12k stars), and you can use it in just three steps: - Create an ArenaTestCase, with a list of “contestants” and their respective LLM interactions. - Next, define your criteria for comparison using the Arena G-Eval metric, which incorporates the G-Eval algorithm for a comparison use case. - Finally, run the evaluation and print the scores. This gives you an accurate head-to-head comparison. Note that LLM Arena-as-a-Judge can either be referenceless (like shown in the snippet below) or reference-based. If needed, you can specify an expected output as well for the given input test case and specify that in the evaluation parameters. Why DeepEval? It's 100% open-source with 12k+ stars and implements everything you need to define metrics, create test cases, and run evals like: - component-level evals - multi-turn evals - LLM Arena-as-a-judge, etc. Moreover, tracing LLM apps is as simple as adding one Python decorator. And you can run everything 100% locally. I have shared the repo in the replies.
3,97 тыс.
17
Содержание этой страницы предоставляется третьими сторонами. OKX не является автором цитируемых статей и не имеет на них авторских прав, если не указано иное. Материалы предоставляются исключительно в информационных целях и не отражают мнения OKX. Материалы не являются инвестиционным советом и призывом к покупке или продаже цифровых активов. Раздел использует ИИ для создания обзоров и кратких содержаний предоставленных материалов. Обратите внимание, что информация, сгенерированная ИИ, может быть неточной и непоследовательной. Для получения полной информации изучите соответствующую оригинальную статью. OKX не несет ответственности за материалы, содержащиеся на сторонних сайтах. Цифровые активы, в том числе стейблкоины и NFT, подвержены высокому риску, а их стоимость может сильно колебаться. Перед торговлей и покупкой цифровых активов оцените ваше финансовое состояние и принимайте только взвешенные решения.