๐งก๐ฆ๐ฆ๐ฅ๐ซก awesome brief by @iAnonymous3000 ๐ฅ๐ฅ๐ฅ
Model substitution in LLM APIs is a documented problem.
Research: "Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs"
Finding: Providers have financial incentives to silently swap expensive models for cheaper ones. Users have no way to verify what's actually running.
Brave just solved this with cryptographically verifiable AI.
The implementation: @brave Leo now uses @near_ai @nvidia Trusted Execution Environments for provable privacy and model transparency. This is hardware-enforced cryptographic guarantees.
THE ARCHITECTURE:
TEE-enabled Nvidia GPUs create hardware-isolated secure enclaves with full encryption of data and code during inference.
Cryptographic attestation reports contain model hashes and execution code hashes.
Remote attestation verifies genuine Nvidia TEE running unmodified open-source code.
THE GUARANTEES:
- Confidentiality: Even a fully compromised OS cannot access TEE memory (hardware isolation)
- Integrity: Cryptographic proof of exact model and code executing
- Verifiability: Open-source chain from code to hardware attestation
THE VERIFICATION CHAIN:
User selects model โ @brave validates @near_ai cryptographic attestation โ confirms @nvidia TEE hardware โ proves DeepSeek V3.1 running unmodified โ green โ
badge displayed
This eliminates three critical problems:
(1) Privacy-washing: Math over marketing. Cryptographic proofs replace privacy policies.
(2) Model substitution: Hardware-enforced proof you're getting the model you selected/paid for.
(3) Trust requirements: Hardware guarantees replace legal agreements.
COMPARISON TO APPLE PRIVATE CLOUD COMPUTE:
Similar TEE approach, different philosophy:
- Apple: Closed ecosystem, proprietary verification, limited auditability
-Brave: Open-source code, user-verifiable attestations, full transparency
TECHNICAL IMPLICATIONS:
This shifts the security model from:
- Trust-based (policies, agreements, promises)
-> Verification-based (cryptography, hardware, math)
From software controls that can be bypassed to hardware enforcements that cannot.
The Nvidia Hopper architecture enables this with minimal performance overhead (benchmarks show near-zero in many cases). Combining CPU TEEs (@intel TDX) with GPU TEEs creates end-to-end confidential computing for LLM inference.
PRIVACY RESEARCH PERSPECTIVE:
This is the privacy-by-design architecture we should demand:
- Cryptographically verifiable (not just auditable)
- Hardware-enforced (not policy-enforced)
- Independently verifiable (not trust-us verification)
- Addresses real economic incentives (model substitution, data monetization)

558
1
The content on this page is provided by third parties. Unless otherwise stated, OKX is not the author of the cited article(s) and does not claim any copyright in the materials. The content is provided for informational purposes only and does not represent the views of OKX. It is not intended to be an endorsement of any kind and should not be considered investment advice or a solicitation to buy or sell digital assets. To the extent generative AI is utilized to provide summaries or other information, such AI generated content may be inaccurate or inconsistent. Please read the linked article for more details and information. OKX is not responsible for content hosted on third party sites. Digital asset holdings, including stablecoins and NFTs, involve a high degree of risk and can fluctuate greatly. You should carefully consider whether trading or holding digital assets is suitable for you in light of your financial condition.


