🎵 DeepMusic-OCR: How AI Learns to Read Sheet Music We adapted DeepSeek-OCR a model built for reading text and taught it to read the 2D language of music notation. Here’s what the paper is really about 👇 Thread 🧵
1/ Unlike normal text, music is two-dimensional: • Vertical = chords / simultaneity • Horizontal = rhythm / time Traditional OMR systems try to segment symbols. DeepMusic-OCR doesn’t. It reads the entire score at once.
2/ 🔍 The Encoder DeepMusic-OCR uses a vision encoder redesigned for music: • 8×8 fine-patch resolution for tiny details • 2D positional encoding aligned with staff lines • Dual attention: local (notes) + global (layout) • Pretrained on millions of synthetic sheets This lets the model capture both symbols and structure.
3/ 🎼 The Decoder Instead of outputting words, the decoder outputs musical events, like: <note:F#5-quarter> <clef:G> <key:D-major> It also handles: • Polyphony • Chords • Multiple voices …thanks to a Mixture-of-Experts architecture.
4/ 🧠 Musical Grammar Built In DeepMusic-OCR isn’t allowed to output impossible music. A “musical grammar loss” penalizes: • Broken measures • Impossible rhythms • Invalid symbols This gives the model a sense of musical correctness.
5/ 🖼️ Training Data Since real OMR data is limited, we generated millions of training examples from: • MusicXML • MuseScore • IMSLP Each score is rendered in multiple engraving styles, with distortions to simulate scanned pages. Synthetic data = the breakthrough.
6/ ⚡ Results With ~200 tokens per page, DeepMusic-OCR achieves: • High symbol accuracy • Consistent measures • Strong transfer to handwritten music And it does so at a fraction of the compute cost of traditional OMR systems.
7/ 🌍 Why This Matters DeepMusic-OCR enables: • Digitization of classical archives • Large-scale symbolic music analysis • Conditioning generative models with real scores • Education tools for musicians This isn’t just OCR it’s visual-symbolic music understanding.
1,232
5
本頁面內容由第三方提供。除非另有說明,OKX 不是所引用文章的作者,也不對此類材料主張任何版權。該內容僅供參考,並不代表 OKX 觀點,不作為任何形式的認可,也不應被視為投資建議或購買或出售數字資產的招攬。在使用生成式人工智能提供摘要或其他信息的情況下,此類人工智能生成的內容可能不準確或不一致。請閱讀鏈接文章,瞭解更多詳情和信息。OKX 不對第三方網站上的內容負責。包含穩定幣、NFTs 等在內的數字資產涉及較高程度的風險,其價值可能會產生較大波動。請根據自身財務狀況,仔細考慮交易或持有數字資產是否適合您。