🧡🦁🦇🔥🫡 awesome brief by @iAnonymous3000 🔥🔥🔥
Model substitution in LLM APIs is a documented problem. Research: "Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs" Finding: Providers have financial incentives to silently swap expensive models for cheaper ones. Users have no way to verify what's actually running. Brave just solved this with cryptographically verifiable AI. The implementation: @brave Leo now uses @near_ai @nvidia Trusted Execution Environments for provable privacy and model transparency. This is hardware-enforced cryptographic guarantees. THE ARCHITECTURE: TEE-enabled Nvidia GPUs create hardware-isolated secure enclaves with full encryption of data and code during inference. Cryptographic attestation reports contain model hashes and execution code hashes. Remote attestation verifies genuine Nvidia TEE running unmodified open-source code. THE GUARANTEES: - Confidentiality: Even a fully compromised OS cannot access TEE memory (hardware isolation) - Integrity: Cryptographic proof of exact model and code executing - Verifiability: Open-source chain from code to hardware attestation THE VERIFICATION CHAIN: User selects model → @brave validates @near_ai cryptographic attestation → confirms @nvidia TEE hardware → proves DeepSeek V3.1 running unmodified → green ✅ badge displayed This eliminates three critical problems: (1) Privacy-washing: Math over marketing. Cryptographic proofs replace privacy policies. (2) Model substitution: Hardware-enforced proof you're getting the model you selected/paid for. (3) Trust requirements: Hardware guarantees replace legal agreements. COMPARISON TO APPLE PRIVATE CLOUD COMPUTE: Similar TEE approach, different philosophy: - Apple: Closed ecosystem, proprietary verification, limited auditability -Brave: Open-source code, user-verifiable attestations, full transparency TECHNICAL IMPLICATIONS: This shifts the security model from: - Trust-based (policies, agreements, promises) -> Verification-based (cryptography, hardware, math) From software controls that can be bypassed to hardware enforcements that cannot. The Nvidia Hopper architecture enables this with minimal performance overhead (benchmarks show near-zero in many cases). Combining CPU TEEs (@intel TDX) with GPU TEEs creates end-to-end confidential computing for LLM inference. PRIVACY RESEARCH PERSPECTIVE: This is the privacy-by-design architecture we should demand: - Cryptographically verifiable (not just auditable) - Hardware-enforced (not policy-enforced) - Independently verifiable (not trust-us verification) - Addresses real economic incentives (model substitution, data monetization)
594
1
Innholdet på denne siden er levert av tredjeparter. Med mindre annet er oppgitt, er ikke OKX forfatteren av de siterte artikkelen(e) og krever ingen opphavsrett til materialet. Innholdet er kun gitt for informasjonsformål og representerer ikke synspunktene til OKX. Det er ikke ment å være en anbefaling av noe slag og bør ikke betraktes som investeringsråd eller en oppfordring om å kjøpe eller selge digitale aktiva. I den grad generativ AI brukes til å gi sammendrag eller annen informasjon, kan slikt AI-generert innhold være unøyaktig eller inkonsekvent. Vennligst les den koblede artikkelen for mer detaljer og informasjon. OKX er ikke ansvarlig for innhold som er vert på tredjeparts nettsteder. Beholdning av digitale aktiva, inkludert stablecoins og NFT-er, innebærer en høy grad av risiko og kan svinge mye. Du bør nøye vurdere om handel eller innehav av digitale aktiva passer for deg i lys av din økonomiske tilstand.